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Improved Biomass Calibration and Validation With
Terrestrial LiDAR: Implications for Future

LiDAR and SAR Missions
Atticus E. L. Stovall and Herman H. Shugart

Abstract—Future NASA and ESA satellite missions plan to bet-
ter quantify global carbon stocks through detailed observations
of forest structure, but ultimately rely on uncertain ground mea-
surement approaches for calibration and validation. A substantial
amount of uncertainty in estimating plot-level biomass can be at-
tributed to inadequate and unrepresentative allometric relation-
ships used to convert plot-level tree measurements to estimates of
aboveground biomass. These allometric equations are known to
have high errors and biases, particularly in carbon-rich forests,
because they were calibrated with small and often biased samples
of destructively harvested trees. To overcome this issue, we present
and test a framework for nondestructively estimating tree and
plot-level biomass with terrestrial laser scanning (TLS). We mod-
eled 243 trees from 12 species with TLS and created ten low-RMSE
allometric equations. The full 3-D reconstructions, TLS allometry,
and Jenkins et al. (2003) allometry were used to calibrate SAR- and
LiDAR-based empirical biomass models to investigate the poten-
tial for improved accuracy and reduced uncertainty. TLS reduced
plot-level RMSE from 18.5% to 9.8% and revealed a systematic
negative bias in the national equations. At the calibration stage, al-
lometric uncertainty accounted for 2.8–28.4% of the total RMSE,
increasing in relative contribution as calibration improved with
sensor fusion. Our findings suggest that TLS plot acquisitions and
nondestructive allometry can play a vital role for reducing uncer-
tainty in calibration and validation data for biomass mapping in
the upcoming NASA and ESA missions.

Index Terms—Carbon, forestry, laser applications, uncertainty.

I. INTRODUCTION

FORESTS provide essential ecosystem services and hold
the vast majority of terrestrial carbon, but remain the most

uncertain components of the carbon cycle [1]. Efforts to quantify
the massive and dynamic storage of global carbon with a higher
degree of certainty have revealed discrepancies arising from
differing approaches [2], [3]. Disagreement in the magnitude of
these distributions emphasizes the weak link in carbon mapping
stems from individual tree and aggregated plot-level biomass
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estimates that are not representative [4]. Biomass estimates are
derived from equations built from laborious destructive sam-
pling of individual trees [5]. The inherent difficulty surrounding
destructive harvesting of trees leads to insufficient sample sizes
that produce unrepresentative spatially biased equations, rarely
including large trees [6]. Before global carbon mapping can
be improved, a substantial progress must be made in creating
more representative allometry that will improve the accuracy of
plot-level estimates of biomass.

Three-dimensional forest structure quantification is required
for effective ecosystem service management and understanding
current and future global carbon dynamics [1]. Global datasets
capturing cover at coarse (MODIS) and fine (Landsat) spatial
scales have allowed us to monitor forest status, but global infor-
mation on the 3-D structure is insufficient for fine-scale man-
agement of essential ecosystem services [7]. Accurate mapping
of more complex ecosystem characteristics such as biomass re-
quires higher spatial resolution and information on the forest
structure [8]. Globally distributed high-resolution 3-D data will
provide the necessary information for managing ecosystems and
constraining future climate projections [9].

Airborne sensors are often used to calibrate spaceborne sen-
sors, but accuracy is dependent on quality plot-level biomass
estimates. NASA’s Land, Vegetation, and Ice Sensor is capable
of capturing fine-scale 3-D vegetation structure that can sim-
ulate Global Ecosystem Dynamics Investigation (GEDI) and
ICESAT-2 (Ice, Cloud, and land Elevation Satellite) data, allow-
ing investigation of the instrument-specific response in a range
of forest ecosystems prior to mission launch. Similarly, the syn-
thetic aperture radar (SAR) used on UAVSAR can inform cali-
bration of spaceborne pol-InSAR, such as NASA–ISRO SAR or
the European Space Agency’s BIOMASS mission. The success
of these missions is directly dependent on accurate plot-level
estimates of biomass that will ultimately improve confidence
in landscape-scale mapping. Precise and unbiased estimates of
biomass at the plot level are an essential component to improv-
ing carbon estimation with all future missions estimating global
carbon. However, errors in plot-level biomass from unrepre-
sentative allometry are unavoidable when relying on traditional
field measurements for calibration and validation.

The empirical relationships used to relate tree diameter and
height to biomass, or allometry, are known to be spatially
variable [10] and not representative at low sample sizes [6],
[11]. The solution to high variability in allometry has been the
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Fig. 1. Framework for reducing uncertainty with targeted TLS acquisition through modeling and improved allometry. At each step of biomass mapping, TLS
can potentially improve the current methodology. (a) At the stage of field sampling, TLS is an efficient and relatively unbiased method of collecting standard forest
structure information (e.g., DBH, height, basal area, and vegetation area index). (b) Plot-level biomass estimation can be improved through direct stem modeling
with TLS or nondestructive local allometry with TLS. (c) TLS can potentially improve sensor calibration and validation through full plot-level 3-D reconstruction.
Reduced uncertainty biomass allometry can be applied regionally, further improving sensor calibration. (d) Low-uncertainty sensor calibration will provide the
greatest potential for reducing uncertainty in biomass mapping.

pooling of massive datasets globally to create stable equations
that are not species specific [12]. While this approach is ac-
ceptable for coarse estimates of forest biomass, it is insufficient
for calibration and validation plot-level data for GEDI and other
missions as they must have high accuracy and precision because
nonspecies-specific equations can have greater than 350% er-
ror [13], emphasizing the importance of equation selection [14].
Improvement in allometric equations is one way to substantially
improve calibration and validation plot data, since it does not
require resampling and can be applied across large areas, but
the inherent difficulties surrounding destructive sampling limit
the feasibility of this approach. Efficient, automated, and nonde-
structive methods of estimating aboveground biomass of single
trees, such as terrestrial LiDAR, offer a solution to the problems
of unrepresentative allometry.

Terrestrial laser scanning (TLS) or terrestrial LiDAR is the
best current method of nondestructively estimating single-tree
and plot-level biomass in a range of ecosystems [15], [16]. TLS
recreates a plot-level structure with millimeter detail, allowing
for 3-D reconstruction of tree stems with geometric modeling
[17]. TLS has been deployed in most of the forest ecosystem
types, successfully estimating tree volume and biomass with
lower error than allometric equations [15], [18]. Calibration and
validation plot data can be improved by applying TLS as a
tool for estimating plot-level biomass with higher accuracy than
allometric equations. Moreover, nondestructive tree modeling
with TLS offers the potential for unbiased and high-sample-size
allometry that can include trees of any size with minimal effort.
The greatest improvements to calibration and validation data
are surely to come in tropical forests where region-specific and
species-specific allometries are extremely rare. While deploying
TLS for direct plot-level biomass estimation and the creation of
area-specific allometry will likely reduce uncertainty in plot-
level biomass estimates used for calibration and validation, it is
still unclear whether or not this will result in major differences
at the level of sensor calibration.

This study presents TLS as a potential approach to improving
airborne and satellite-based biomass calibration and validation

through direct structural measurements and improved allometric
equation development (see Fig. 1). We investigate TLS in this
context by:

1) directly modeling plot-level tree biomass and developing
high-sample-size nondestructive local biomass allometry
for the dominant species groupings in a broadleaf decid-
uous hardwood forest;

2) using both direct and allometrically derived TLS biomass
estimates for calibrating an empirical plot biomass model
with SAR and LiDAR;

3) comparing the uncertainty of the biomass models to
an equivalent approach relying on the national-scale
Jenkins et al. [19] biomass allometry.

II. METHODS

A. Study Area and Species Selection

The study site is the 25.6 ha (400 m × 600 m) Smithsonian
Institute Global Earth Observatory (SIGEO) temperate Large
Forest Dynamics Plot in the Smithsonian Conservation Biol-
ogy Institute near Front Royal, VA (38◦53’36.6” N, 78◦8’43.4”
W; Fig. 2). This mixed deciduous hardwood forest is nearly
100 years old and representative of many on the east coast
of the U.S. experiencing postagricultural regrowth. Elevation
ranges from 273–338 m and mean annual temperature and pre-
cipitation for the area are 12.7 ◦C and 970 mm, respectively.
This SIGEO site was intensively sampled in 2010 for species,
diameter, and stem location from a dataset of over 56 000 in-
dividuals greater than 1-cm diameter at breast height (DBH)
[20]. We used the a priori forest structure information to deter-
mine the most important species for biomass analysis based on
available allometry. The dominant species contributing biomass
to the forest with average wood density values (g·cm−3 ) were:
Liriodendron tulipifera (0.40), Carya cordiformis (0.62), Carya
glabra (0.62), Carya ovalis (0.62), Carya tomentosa (0.62), Fa-
gus grandifolia (0.56), Fraxinus americana (0.55), Nyssa sylvat-
ica (0.46), Quercus alba (0.60), Quercus prinus (0.57), Quercus
rubra (0.56), and Quercus velutina (0.56) [21]. These species
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Fig. 2. Overview map of SIGEO forest at the Smithsonian Conservation Biology Institute in Front Royal, VA (�). Fourteen randomly distributed 1/10th ha
circular plots (shown to scale) were located on the 20-m grid intersections and scanned with TLS (blue). Eleven additional plots were included for SAR and LiDAR
calibration (brown). An elevation model derived from the 2011 LiDAR acquisition shows the topography across the site. Note: TLS plots are positioned off center
from the shown grid intersections, as these locations were georeferenced to the LiDAR canopy height model.

were used for nondestructive TLS-based local allometric equa-
tion development described in the subsequent sections, as they
were estimated to contribute over 80% of aboveground forest
biomass.

B. TLS Allometry

1) TLS Sampling and Postprocessing: Within the SIGEO
forest, we chose 14 1/10th ha circular (radius ≈ 17.8 m) plot
sampling locations at random using ArcGIS mapping software.
TLS sampling took place over four days in April of 2015 during
leaf-off conditions. Individual plots were located using a hand-
held Garmin eTrex GPS unit, and plot centers were found on the
marked 20-m grid intersections of the SIGEO plot grid network.
The Faro Focus 120 3-D phase-shift TLS was set to medium res-
olution and quality (1/5 resolution and 4× quality) for a total
of 28.2 million pulses per scan. Time elapsed per scan was ap-
proximately 3 min. We reduced occlusion from the presence
of high-density vegetation by scanning five times in a diamond
pattern oriented at approximately each cardinal direction to pro-
vide sufficient coverage and a standardized sampling scheme.
At times, an additional scan was required for full coverage. To
aid in postprocessing scan registration, we placed 6-in-diameter
polystyrene spheres atop fiberglass stakes throughout the plot.
Multiple scans were digitally registered using the registration
points, as described in the following section.

2) Postprocessing: Individual scans were registered using
the automatic registration algorithms included in Faro SCENE
[22], and overlapping redundant points were filtered to create

a single 3-D point cloud used for modeling. The registration
process relied on the spheres used on each field plot. Spheres
were located in every scan and aligned with each correspond-
ing sphere in other scans from the same plot. We evaluated
plot-level registration error in SCENE to ensure precise scan
placement (mean = 4.5 mm, sd = 4.8 mm, and max = 14 mm).
While phase-shift TLS is less expensive and provides fast high-
resolution scans, the technology is susceptible to noise on edges
and close to the range limit. To improve the scan quality, we
filtered scans by removing all returns below the intensity thresh-
old of 400. A stray point filter included in the Faro software was
then used to remove ambiguous points at the edges of vegetation.
The registered point cloud data were then exported with column
and row numbers, which correspond to scan azimuth and angle,
as well as intensity values ranging from 0 to 2100. Registered
plot-level point clouds typically had approximately 100 million
returns in closed canopy forest. TLS can reduce the geolocation
error when paired with airborne LiDAR, mitigating some of the
uncertainty in the calibration stage [23]. We minimized errors
in plot GPS locations by manually georeferencing TLS data to a
1-m LiDAR-derived canopy height model. To accomplish this,
each registered TLS cloud was placed at the initial coordinates
of the grid intersection and adjusted in the xyz space until the
top-of-canopy returns in the TLS cloud aligned with the LiDAR
model (Blue plots, Fig. 2).

3) Volume and Biomass Estimation: We separated and mod-
eled individual trees on each plot using an automated workflow
within the CompuTree software [24]. The processing took place
in four steps: ground point classification and DTM creation,
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Fig. 3. Example (a) TLS point cloud from a 120-cm-diameter Liriodendron
tulipifera and the resulting (b) 3-D TLS model.

stem identification, tree segmentation, and stem reconstruction
with quantitative structure models (QSMs) (see Fig. 3). The
ground points were classified with a local minima ground esti-
mation algorithm, which reconstructs the DTM, while exclud-
ing aboveground points associated with vegetation. Stems were
identified using a nearest neighbor and connected component
approach on a small slice in the point cloud made parallel to
the DTM. Stems spaced apart from one another were identified
as a unique object, and this portion of the point serves as the
initial seed point to initiate the cylinder modeling algorithm im-
plemented in SimpleTree [18]. The tree was then automatically
segmented from the point cloud using an iterative nearest neigh-
bor approach, starting at the initial seed point on the stem and
moving vertically while expanding in area with the expanding
tree crown. The segmented tree was then reconstructed through
cylinder fitting with the QSM algorithm. The best-fit cylinders
were used as a guide for creating an allometric relationship be-
tween trunk size and branching order—an adaptation of the pipe
model concept or scaling theory [25]. This single-tree relation-
ship guided all low-certainty cylinder measurements, filling gaps
in the tree model with likely cylinder sizes that correspond to
the expected branching order. As a result, tree reconstructions
have low variability between model runs because whole-tree
estimates are primarily based on high-quality cylinder mea-
surements. This approach as implemented in SimpleTree was
validated with a number of destructive samples and accurately
estimated biomass with approximately 10–15% RMSE [18].
Based on the previous success of these algorithms in similar
forest systems in leaf-off conditions, we anticipated this appli-
cation in our forest to be comparable in accuracy and precision.

The cylinder models (referred to as TLS models hereafter)
provided an estimate of volume, which were converted to esti-
mates of biomass using

Biomass = ρs VTLS (1)

where VTLS is the modeled volume (cm3) and ρs is the average
species specific wood density (g·cm−3) reported in the litera-
ture [21]. Since we were unable to validate the TLS models
with destructive samples at this study site, the uncertainty of
the TLS-based volume estimates was assumed to be compara-
ble to a previous study in similar leaf-off conditions (11.38%)
[18]. Biomass estimates were converted to kilograms for direct
comparison to other allometric equations.

While small-scale biomass mapping is unlikely to show wide
variation in species-specific wood density, we attempted to cap-
ture potential species-specific variability in our TLS models.
Legacy Tree Data is an in-progress compilation of thousands of
tree-level measurements from across the United States [26]. We
used Legacy Tree Data to collect whole-tree wood density mea-
surements from 359 trees sampled in Virginia and surrounding
states covering all of our study species except Fagus grandi-
folia (data unavailable) [27]–[29]. Measured species-specific
wood density was within 5% of the average values reported in
[21]. Measured values had an average standard deviation across
all species of 0.027 (g/cm3) or 5%. We incorporated this vari-
ability in species-specific wood density in the uncertainty of the
TLS models to more accurately capture uncertainty using this
method of biomass estimation. For a simple analysis of species
and density effects on volume and biomass estimates, we strat-
ified our allometric models by these two factors and quantified
the improvements in RMSE in each case. This approach of dis-
entangling density effects may be beneficial to future national-
scale biomass estimation, allowing density-dependent allome-
try, along with uncertainty, to be captured and used across large
areas.

4) Allometric Equation Development: Allometric relation-
ships were developed from the TLS biomass estimates with a
log-linear regression method taking the form

B̂tree = exp (β0 + β1 ∗ ln (DBH)) + εtree (2)

where β0 and β1 are the model coefficients and εtree is the resid-
ual error from the allometric equation. We created diameter–
height allometry from the same set of trees with the form

B̂tree = exp (β0 + β1 ∗ ln (DBH2 H)) + εtree (3)

Considering that the predictor, DBH2 H , is proportional to
columnar wood volume, the final equations were approximately
linear, but log transformed in order to satisfy the assumption
of homoscedasticity for least-squares regression. Height was
not directly measured across all trees at the site, so an allo-
metric model was built in the same form as (2), substituting
tree height for biomass. Trees with direct TLS-based measure-
ments of height were assumed to have a zero error, but for
allometric height estimates, we included this uncertainty in the
model.

Modeled trees were grouped into five different equa-
tions: Liriodendron, Carya, Quercus, Mixed Hardwood, and
Maple/Oak/Hickory/Beech (see Table I). The groups were based
on the dominant forest species (Poplar, Oak, and Hickory)
and two general equations similar to groupings in [19] that
could describe the remaining abundant species. TLS mod-
els of Carya species had a maximum diameter of 47 cm, so
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TABLE I
GENERAL DIAMETER AND DIAMETER–HEIGHT ALLOMETRY INCLUDING THE TEN SPECIES MODELED WITH TLS

Form Equation Range (cm) n β0 β0 [se] β1 β1 [se] r2 RMSE (CV)

DBH Lt 13 – 120 47 −1.9136 0.17 2.3513 0.04 0.98 0.16
Q 11 – 93 66 −1.5091 0.25 2.3237 0.07 0.95 0.24
C 10 – 47 86 −2.2249 0.25 2.5765 0.08 0.92 0.31

MH 11 – 120 77 −2.2647 0.16 2.4503 0.05 0.97 0.26
MO 10 – 105 166 −1.6637 0.14 2.3787 0.04 0.95 0.29

DBH2 H Lt 13 – 120 47 −3.1210 0.18 0.9263 0.02 0.99 0.15
Q 11 – 93 66 −3.2444 0.25 0.9722 0.02 0.97 0.20
C 10 – 47 86 −2.8364 0.23 0.9398 0.03 0.94 0.27

MH 11 – 120 77 −2.9337 0.15 0.9135 0.01 0.98 0.22
MO 10 – 105 166 −2.8783 0.13 0.9415 0.01 0.97 0.24

Equations were created for Liriodendron tulipifera (Lt), Quercus (Q), and Carya (C). The mixed hardwood equation (MH)
includes Fraxinus americana, Liriodendron tulipifera, and Nyssa sylvatica. The Hard maple/Oak/Hickory/Beech equation (MO)
includes Quercus, Carya, and Fagus grandifolia. RMSE is in log units and based on fivefold cross validation.

the Maple/Oak/Hickory/Beech equation was used for individ-
uals that exceeded the Carya allometry diameter range. The
high-biomass contribution of the ten species included in these
allometric models increases the likelihood for changes
to allometrically derived forest biomass under differing
equations.

Several equation forms were evaluated in terms of coeffi-
cient of determination (R2), Akakai information criterion (AIC)
weights, and RMSE. While the diameter did not explain as
much biomass variability as equations also including height,
the diameter-only equation provided a clear comparison to the
Jenkins et al. equations. Diameter–height equations were in-
cluded to show the potential for reducing biomass uncertainty
by including height in allometry. Model uncertainty of each al-
lometric equation was reported in terms of RMSE in log units in
order to reflect increasing uncertainty with increasing biomass
and to directly compare to the Jenkins et al. equations’ reported
error. We performed a fivefold cross validation on each allomet-
ric equation to independently estimate uncertainty.

5) Biomass Estimation: We applied our nondestructive al-
lometry and Jenkins et al. allometry to the diameter measure-
ments of the trees located within each TLS plot. For those indi-
viduals that were not selected for updated allometry, the national
equations were used in order to provide a biomass contribution in
our assessment. We used biomass estimates from TLS models
with TLS allometry, TLS diameter allometry, TLS diameter–
height allometry, and Jenkins et al. allometry as our calibration
datasets. The plot-level biomass estimates derived from the di-
rect 3-D tree models were supplemented with TLS allometry or
national-scale allometry if the individual was not successfully
modeled, as was the case with many small trees in each plot. The
national-scale equations were substituted if the species was not
one of the 12 species included in the TLS allometry to ensure
every individual contributed biomass regardless of the equation
used. Aboveground biomass density (Mg·ha−1 ) was estimated
by aggregating tree estimates to the plot level using

B̂plot =
n tree, plot∑

i=1

B̂tree,i/s (4)

where ntree,plot is the number of trees on a plot and s is the area of
the plot in hectares. We propagate uncertainty due to allometry
to the plot level with methods outlined in a previous study [30]
using

σplot =

√√√√
n tree, plot∑

i=1

σtree,i
2/s (5)

where σtree,i is the biomass error from allometric equation
residuals.

C. SAR and LiDAR Biomass Calibration

1) SAR Data Source: Phased-Array-type L-band Synthetic
Aperture Radar (PALSAR) data captured in the fine-beam dual-
polarization mode with the Advanced Land Observing Satellite
on January 5, 2011 was acquired for this study to investigate allo-
metric uncertainty in calibration of SAR sensors for biomass es-
timation. The high-resolution radiometrically terrain-corrected
PALSAR data product is radiometrically and geometrically cor-
rected with the National Elevation Dataset to ensure that pixel
values accurately represent backscatter from the reflecting sur-
face and images are not distorted. Multilook processing degrades
resolution by averaging over the slant range and/or azimuth
while producing a 12.5-m-resolution square pixel raster. Coreg-
istration was visually verified in the study area against high-
resolution imagery by comparing isolated buildings in open
areas and forest edges. Alignment was found to be accurately
geolocated at the subpixel level. The horizontal send and ver-
tical receive mode of the L-band SAR is strongly related to
biomass up to approximately 150 Mg·ha−1 [31] and was used
for biomass model calibration. All processing was completed
by the Alaska Satellite Facility [32].

2) Airborne LiDAR Data Source: Airborne LiDAR data
were acquired with the Optech 3100 instrument at approxi-
mately 1371 m above the ground level over an area overlapping
the SIGEO forest from March 1–9, 2011 and extended nearly
2500 km2 beyond our site. Nominal point spacing was 1 m,
and up to four returns were recorded. The primary purpose of
the LiDAR acquisition was high-resolution digital earth model
(DEM) creation, so it was completed in leaf-off conditions at
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this lower point spacing. Average horizontal and vertical errors
were 37 and 6.6 cm, respectively.

3) SAR and LiDAR Metrics: Canopy height and SAR
backscatter were used as two analogous variables to the up-
coming satellite missions attempting to characterize global for-
est structure. The SAR backscatter (SARσ ) can penetrate cloud
cover and has a strong relationship with biomass in lower density
environments. However, in high-biomass forests, the backscat-
ter has a well-documented loss of sensitivity or “saturation.”
Considering the lack of low-biomass forest in our study area,
we anticipated a high-uncertainty model with a limited predic-
tive power. We attempted to improve the model by selecting
eight open-field plots near the site with zero biomass to include
in our calibration. The low-biomass plots were strictly used for
calibration and were excluded in any evaluations of RMSE to
avoid inflation of model statistics.

Canopy height will be captured with LiDAR (GEDI and ICE-
SAT II) and PolInSAR or TomoSAR (BIOMASS and NISAR),
thus making this structural variable essential for estimating
biomass and quantifying the potential for uncertainty reduc-
tion with application of TLS. We used the Fusion LiDAR Data
Toolkit to calculate canopy metrics. The processing was accom-
plished using the CloudMetrics algorithm. The mean canopy
height (MCH) was calculated by first creating a 5-m-resolution
DEM using all LiDAR ground returns. The LiDAR data were
normalized to the DEM, subtracting the corresponding DEM
elevation from the point cloud. Ground returns were removed
with a simple 1-m height threshold above the DEM. The MCH
was calculated as the mean height above the DEM of all returns
above ground on each 1/10th ha circular plot. Additionally, the
most frequent LiDAR return height (MODE), the number of
fourth returns within a plot (4R), and the 99th percentile of
return intensity (I) were calculated for a multiple regression
model.

4) SAR and LiDAR Empirical Models: Two empirical model
forms were used to estimate plot biomass relying on single lin-
ear regression for the individual LiDAR and SAR metrics—
MCH and SARσ —and multiple linear regression for the combi-
nation of the two metrics. We included an additional model
built from LiDAR-derived metrics using the MCH, as well
as MODE, 4R, and intensity. The four models were created
for each set of biomass estimation methods: TLS models,
TLS diameter allometry, TLS diameter–height allometry, and
Jenkins et al. allometry. The combination compared the four
SAR- and LiDAR-based metrics and four methods of estimat-
ing biomass for a total of 16 empirical models. For each simple
linear model, biomass (B̂plot) was estimated using

B̂plot = β0 + β1(MCH, SARσ ) + εplot (6)

where β0 and β1 are the model coefficients describing the rela-
tionship of LiDAR or SAR metrics (MCH or SARσ ) to biomass.
The error term εplot represents the residual error of the empirical
biomass model. In the case of multiple regression, the model
takes the form

B̂plot = β0 + β1(MCH) + β2(SARσ ) + εplot (7)

where β1 and β2 are coefficients for MCH and SARσ , respec-
tively. The final four-variable model followed the form of (7),
but used MCH, MODE, R4, and I, along with the corresponding
coefficients (β3 and β4). Errors in estimating LiDAR metrics
and model parameters contribute very little to the total uncer-
tainty compared to the residual error in the calibration model
[30] and were assumed to be negligible for this analysis. εplot

is entirely derived from the residual error; however, given these
formulations, plot biomass uncertainty is not accounted for. Any
variation in εplot under differing allometric relationships will be
due to changes in mean biomass density, rather than propagated
allometric uncertainty. We quantify LiDAR model prediction
uncertainty including the allometric error with

σpred
2 = σε,plot

2 + σε,B̂plot

2 (8)

where σpred is the total uncertainty from the empirical biomass
model, σε,plot is the uncertainty due to LiDAR model residu-
als, and σε,B̂plot

is the uncertainty propagated from allometric
equations to the plot level. The sources described were the ma-
jor contributors to biomass prediction uncertainty in a similar
analysis quantifying most sources of uncertainty in biomass
mapping [30].

III. RESULTS

A. TLS Allometry

TLS successfully created ten different allometric equations
using 243 3-D tree models. Small stems below 10 cm in diam-
eter were difficult to accurately model so most were excluded
in this study, but considering our interest in estimating biomass,
we measured TLS modeling success by the total basal area cap-
tured per plot. On average, TLS modeled 70.6% of the plot
basal area. A single plot was a strong outlier with extremely
dense understory vegetation and only three trees successfully
modeled with TLS. Removing this outlier increased the total
plot basal area modeled with TLS to 92.9%. From the TLS
models, three equations were created according to the domi-
nant species across the site: Liriodendron tulipifera, Quercus,
and Carya. Two additional equations encompassed the species
included in the Jenkins et al. 2003 mixed hardwood (MH) and
Hard maple/Oak/Hickory/Beech (MO) equations using a high
number of TLS models. The additional equations were used for
any individuals that were beyond the more specific equations
diameter range in order to reduce bias in larger trees.

The grouping used in this study was based on the evaluation
of multiple equation forms (data not shown). The diameter-
based equation selected had the lowest AIC and highest AIC
weight of all model forms tested. The inclusion of height re-
duced the RMSE across all equations. However, since height
was not measured across the site, we estimated the height across
the site with allometry derived from the TLS models (RMSE =
3.95 m, 17.3%). Initially, individual species equations were eval-
uated, but no significant differences in slopes were found across
multiple species. All Carya species were statistically similar.
Only Quercus velutina was significantly different in the Quer-
cus equation grouping. The Liriodendron tulipifera equation
was prioritized because of the presence of this species across



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

STOVALL AND SHUGART: IMPROVED BIOMASS CALIBRATION AND VALIDATION WITH TERRESTRIAL LIDAR 7

TABLE II
UNCERTAINTY OF 16 EMPIRICAL BIOMASS MODELS BASED ON CALIBRATION DATA FROM TLS MODELS (M), TLS DIAMETER–HEIGHT ALLOMETRY (DH), TLS

DIAMETER ALLOMETRY (D), AND JENKINS et al. 2003 EQUATIONS

Model Method σε,plot σε,plot (%) σpred σpred (%)

β0 + β1 (SARσ ) TLS (M) 119.0 38.9 123.0 40.2
TLS (DH) 119.0 38.2 123.0 39.5
TLS (D) 119.0 38.1 123.0 39.3
Jenkins 125.0 45.3 128.0 46.6

β0 + β1 (MCH) TLS (M) 54.7 17.9 62.4 20.4
TLS (DH) 55.0 17.7 66.1 21.2
TLS (D) 55.0 17.6 68.5 22.0
Jenkins 63.2 23.0 81.1 29.5

β0 + β1 (MCH) + β2 (SARσ ) TLS (M) 54.6 17.8 62.4 20.4
TLS (DH) 55.2 17.7 66.3 21.2
TLS (D) 55.2 17.7 68.6 22.0
Jenkins 63.5 23.1 81.3 29.6

β0 + β1 (MCH) + β2 (I)+ TLS (M) 40.8 13.3 50.7 16.6
β3 (MODE) + β4 (4R) TLS (DH) 41.5 17.5 55.3 21.8

TLS (D) 41.5 13.3 58.1 18.6
Jenkins 52.1 19.0 72.8 26.5

Four models are compared using SAR backscatter (SARσ ) and MCH, as well as two multiple regression models using both metrics and a suit of airborne LiDAR metrics—
LiDAR intensity (I), most common return height (MODE), and number of fourth returns (4R). Model residual uncertainty (σε , plot) and propagated uncertainty (σε , pred) are
reported in Mg·ha−1 and as a percentage of the mean (equivalent to the relative RMSE).

the site. To evaluate effects of species and density on biomass
and volume estimates, we stratified our equations by these fac-
tors and tested for significant model improvement. Volume
allocation differed across species, resulting in increased ex-
planatory power in the diameter-based allometric model (p <
0.001), but when height was included species did not offer addi-
tional explanatory power (p = 0.44). Wood density has a strong
effect on model precision, improving RMSE substantially for
the diameter (0.33 versus 0.28, p < 0.001) and diameter–height
(0.28 versus 0.22, p < 0.001) models.

The Liriodendron tulipifera equation had the lowest uncer-
tainty (RMSE = 0.16) of all TLS allometry and the lowest equa-
tion sample size (n = 47; Table I). The Carya equation had the
highest uncertainty (RMSE = 0.31) but the highest sample size
for a single-species equation (n = 86). The MO equation had a
high diameter range (10–105 cm) and the highest sample size
(n = 166). The MH equation had the highest diameter range
(11–120 cm) of all equations, and the slope coefficient (β1)
was similar to the Jenkins et al. MH equation (2.4503 versus
2.4835, respectively), but RMSE was lower (0.26 versus 0.36,
respectively). Including height improved model fit and reduced
uncertainty in all equations (see Table I).

B. Biomass Estimation and Uncertainty Analysis

Tree biomass estimations from TLS models with TLS allom-
etry, TLS allometry, and Jenkins et al. allometry were aggre-
gated to the plot level to be used for LiDAR and SAR empirical
models. A total of 1818 trees were included on the TLS plots
(blue, Fig. 2), but including the additional 11 plots for calibra-
tion increased the sample to 3947 trees. TLS-based biomass
density was similar across all TLS-based methods with 306 ±
117 Mg·ha−1 for TLS models, 312 ± 120 Mg·ha−1 for TLS
diameter allometry, and 311 ± 121 Mg·ha−1 for TLS diameter–
height allometry, but Jenkins et al. estimates were lower (275
± 126 Mg·ha−1 ). Relative plot uncertainty was lowest with

TLS models (9.8%), followed by TLS diameter–height allome-
try (12.2%), TLS diameter allometry (13.1%), and Jenkins et al.
allometry (18.5%). Uncertainty of the TLS diameter–height al-
lometry reduced to 11.8% if height was assumed to be measured
error-free, rather than estimated from diameter measurements.

For the empirically derived calibration models, the MCH out-
performed the SAR backscatter as a predictor variable, but the
combination had both lower uncertainty and bias (see Table II).
Propagating allometric uncertainty to the LiDAR models in-
creased model uncertainty in all cases. Use of TLS models over
the Jenkins equations for calibration reduced model uncertainty
through reduced plot-level uncertainty and lower residual error.
For example, TLS models reduced the residual error by 5.4% and
the propagated error by 9.7% in the MCH LiDAR model. TLS
reduced uncertainty in all calibration models with the greatest
reduction in the multiple regression model (9.9%). The relative
contribution of error from allometry increased with improved
LiDAR models (see Fig. 4). The most uncertain set of mod-
els (SARσ ) had the lowest relative contribution of uncertainty
from allometry (2.8–3.1%), while the least uncertain set (four-
variable LiDAR model) had the highest relative contribution to
uncertainty from allometry (19.6–28.4%).

IV. DISCUSSION

The framework presented in this study uses TLS to reduce
uncertainty at multiple levels of biomass estimation. We com-
pared uncertainty from plot-level 3-D stem reconstruction, TLS
diameter allometry, TLS diameter–height allometry, and the
Jenkins et al. 2003 equations. The five TLS-derived allomet-
ric equations created using 3-D stem models had low un-
certainty and high sample size, making them suitable for
application across other plots within the site. Plot uncertainty
was estimated from the RMSE in the allometric equations and
propagated to the empirical plot biomass relationship from Li-
DAR metrics. The source of the majority of biomass estimation
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Fig. 4. Comparison of SAR and LiDAR biomass calibration models (top row) and propagated uncertainty of biomass estimates (bottom row). PALSAR
backscatter was used as a representative metric captured with PolSAR missions [(b) and (f)]. MCH was used as a comparable canopy height metric collected
using spaceborne LiDAR (GEDI or ICE-Sat II) [(b) and (f)]. MCH and backscatter were combined to emulate PolInSAR or TomoSAR (BIOMASS or NISAR)
and potential cross-sensor fusion [(c) and (g)]. The final row [(d) and (h)] uses a calibration approach more common to airborne LiDAR, combining multiple
height metrics (MCH, intensity, most frequent return height, and the number of fourth returns). The TLS models (black) provided the lowest uncertainty estimates,
followed by TLS diameter–height allometry, TLS diameter allometry (gray), and Jenkins et al. 2003 allometry (red). TLS diameter–height allometry is not shown,
as the trend and data points were indistinguishable from the TLS diameter allometry (gray). TLS reduced the total propagated uncertainty of LiDAR calibration by
10% (over 30% relative), with improvements in both plot-level and LiDAR calibration RMSE. Percentages within stacked bars indicate the relative contribution
of uncertainty from allometry (blue) versus the LiDAR-derived empirical model (gray).

uncertainty was the residual error in the SAR and LiDAR cal-
ibration models, but allometry contributed 2.8–28.4% of the
total uncertainty. A combined set of LiDAR metrics produced
the best model with low uncertainty. In all cases, TLS reduced
uncertainty in biomass estimation.

A. TLS for Local Nondestructive Allometry

The findings from this study suggest that TLS is an efficient
means of creating nondestructive local allometry for estimating
biomass. We scanned over the span of four days, averaging three
1/10th ha plots per day. The relatively short-time expenditure
for field work resulted in 329 3-D tree models (only 243 were
used in this study). Other work has emphasized the cost and
labor saved by using TLS in place of destructive sampling, and
we see similar benefits in this approach [16].

Another clear benefit from TLS was the ability to estimate the
biomass of several large trees above 70 cm that would otherwise
be too costly or simply unfeasible to sample. The largest trees
included in the national equations were 73 cm, as opposed to
120 cm in our TLS allometry. TLS allometry estimated modeled
trees greater than 70 cm to have an average of 769 kg more
biomass per tree than the Jenkins et al. equation estimates.
The larger trees included in our allometry constrain estimates
of biomass, thus reducing uncertainty in the upper diameter
range. Moreover, direct modeling of large trees reduced plot

uncertainty substantially, as these individuals have the highest
potential for error. Further reductions in error were found across
every equation using height and diameter as predictors.

TLS allometry outperformed the reported error of the
Jenkins et al. 2003 equations. Given the scale of the Jenkins
allometry, we expected this finding, as these equations encom-
pass a much broader range of growing conditions than are found
at our single site. As such, one of the major benefits and likely
sources of error reduction in TLS allometry was the ability to
create high-sample-size equations on a small spatial scale, lim-
iting the impact of environmental variation in the equation. We
decided to group species based on a preliminary allometric anal-
ysis by creating two genus-grouped equations with species as
a categorical variable. We found species within the genera of
Quercus and Carya to be statistically indistinguishable in terms
of β0 and β1 . The grouping of these individuals allowed us to
increase equation sample size and reduce the number of species-
specific equations needed– - ultimately leading to a more reli-
able single equation. We included TLS model uncertainty based
primarily on past validation studies of tree volume and regional
destructive measurements of wood density. These two sources
of error result in TLS model uncertainty of 12.4%, a comparable
error to other destructive TLS validation studies [15], [18].

While TLS provided low-uncertainty allometry in this study,
there are still currently major limitations to the technology that
impede widespread deployment. We collected the TLS data in
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low-wind leaf-off conditions in order to clearly model the woody
portion of the tree stem, but this scenario can only be achieved in
certain areas. Rain and wind are also detrimental to the quality
of TLS data and must be avoided if reliable volume estimates
are required. Deciduous forest ecosystems have the potential to
benefit greatly from TLS, while dense tropical forests present
significant challenges. A dense understory in any forest will sub-
stantially reduce visibility and increase occlusion. Standardized
systematic sampling schemes have been suggested [33], but a
thorough analysis of occlusion in the context of QSM’s has yet
to be completed. Instrument choice will impact scan quality and
ultimately affect the quality of TLS models and biomass esti-
mates. We used a low-cost phase-shift TLS unit known to suffer
from noise, but lower noise instruments are becoming more af-
fordable and can improve the scan quality. Finally, uncertainty
in tree-level wood density presents a major challenge in high-
diversity forests and must be improved before TLS is regularly
deployed in these environments.

Total plot biomass was higher and uncertainty was markedly
reduced at the plot level in both TLS scenarios compared to
the Jenkins et al. equations. Given the reduction in uncertainty
across allometric equations, we anticipated lower error at the
plot level, but plot uncertainty only reduced by 7.1% with TLS
models, 5.7% with TLS diameter–height allometry, and 4.0%
with TLS diameter allometry. However, TLS model-based plot
biomass was 31.4 Mg·ha−1 higher on average than the Jenkins
equations, suggesting that the improvements to biomass uncer-
tainty may be realized at the calibration and validation stage
through higher accuracy plot-level biomass values rather than
increased precision. The higher estimates of biomass density
using TLS suggests that: 1) this approach is sensitive to higher
biomass in larger trees; and 2) national-scale allometry may be
underestimating the biomass of large trees in analogous forest
types. Direct 3-D modeling captures biomass density more ac-
curately because biomass is not estimated with allometry. Since
allometry estimates the mean value of biomass for a specific
diameter, extreme examples of high biomass are unlikely to be
estimated accurately. Allometry has been shown to systemati-
cally under- or overestimate biomass, depending on the forest
type [11], highlighting the need for targeted TLS acquisitions for
improved allometry or to directly estimate large tree biomass.

B. Reducing Uncertainty in SAR and LiDAR Models

Uncertainty is rarely propagated in analyses of biomass es-
timation with remote sensing methods [30], and no studies to
our knowledge have quantified reductions to SAR or LiDAR
biomass model uncertainty using TLS. Our approach uses TLS
to reduce uncertainty from allometry and calibration error. The
sensor calibration error is impacted primarily by the represen-
tative nature of the metric used to predict biomass (MCH or
backscatter, in this study) and the accuracy of the field biomass
estimates. We emphasize that nearly every remote sensing cal-
ibration and validation method for biomass estimation relies
on estimates derived from empirical models rather than known
values, except rarely, when destructive sampling of trees are
used after data acquisition; in essence, an allometric model is

used to calibrate metrics for a remote sensing model. TLS po-
tentially provides a means to reduce the reliance on generalized
allometric models for the calibration stage, thus reducing uncer-
tainty. Since plot-level biomass can be estimated using a range
of techniques, the chosen method can potentially have a dra-
matic impact on the final sensor calibration [14]. By quantifying
improvements in empirical model calibration and propagating
uncertainty, we can make more informed decisions concerning
sensor calibration plot data moving forward in estimating global
forest biomass.

SAR missions can be improved with TLS, even in the pres-
ence of a high-uncertainty calibration model. The backscatter
provided a higher RMSE model (39.3–46.6%), but TLS still
reduced uncertainty by 7.3%, a major benefit relevant for future
SAR missions, especially in forests with lower biomass density.
Even still, the SAR backscatter is limited by loss of sensitiv-
ity in high-biomass forests, where the residual model error is
of greater relative importance compared to plot-level allometric
uncertainty. For spaceborne applications, the greatest benefits
will be realized with the combination of LiDAR, PolInSAR,
or TomoSAR height and backscatter metrics, allowing “wall-to-
wall” estimates less affected by cloud cover. In this study, fusing
LiDAR height metrics to the SAR data dramatically improved
the R2 of the calibration model from 47–56% to 73–78%. Our
findings suggest that a combination of TLS biomass estimates
and remotely sensed height will improve future SAR sensor
calibration.

Canopy height is almost certainly the most ubiquitous metric
used to estimate biomass across an extensive range of forested
ecosystems [2], [3], [13], [34], [35]. We used the MCH as an
analogous metric to many of the upcoming satellite missions
for estimating biomass. While our LiDAR calibration is directly
applicable to the GEDI and Ice-SAT II missions because of
the similar technology, the same findings apply to multisensor
SAR configurations used to estimate forest height. The strong
relationship between height and biomass found in this study
confirms the findings of the overwhelming body of publications
on the subject. TLS provided the most accurate and precise esti-
mates of plot biomass and thus reduced the residual error in the
LiDAR empirical model. The Jenkins et al. allometry system-
atically underestimated biomass density and was less sensitive
to high-biomass plots. The strong agreement between TLS plot
biomass estimates and LiDAR-derived MCH is explained by
TLS plot estimates being derived from the direct sensing of for-
est structure rather than the indirect Jenkins et al. allometry. The
strength of the LiDAR relationships was not anticipated given
the low pulse density (approximately 1 pulse·m−2) of the air-
borne LiDAR acquisition, emphasizing the explanatory power
of the MCH.

Our findings suggest that traditional allometric approaches
to sensor calibration may be systematically underestimating
landscape-scale biomass estimates. Across every calibration
model in this study, national allometry underestimated biomass
compared to TLS estimates. More TLS acquisitions are needed
in an array of forest ecosystems to verify the extent and mag-
nitude of this newly discovered bias, but a shift in biomass
calibration in line with this study has major implications. Our
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findings of systematic negative bias agree with recent tree-level
TLS work in tropical systems [36], but we show that the impacts
of these biases propagate to the plot-scale and the sensor cali-
bration stage. Less biased TLS estimates can potentially mit-
igate backscatter saturation in SAR systems like NISAR or
BIOMASS by increasing the range of predicted biomass (13.5%
in this study), while low-biomass systems benefit from higher
precision estimates. LiDAR systems such as GEDI or ICE-Sat II
will be capable of estimating biomass in dense forests, but TLS
may provide additional sensitivity and reduced bias in some of
the highest density forests. TLS can also potentially provide less
biased low-uncertainty calibration for airborne LiDAR acquisi-
tions intended to inform spaceborne sensors.

V. CONCLUSION

TLS is an effective and efficient means of reducing un-
certainty in calibration of remote sensing missions estimating
biomass. We emphasize that the framework described is broadly
applicable beyond the specific TLS system and remote sensing
products used in this study. More advanced TLS systems using
multiple returns and lower noise technology (e.g., time of flight)
will further reduce uncertainty in biomass assessment, provid-
ing high-sample-size allometry primarily representing regional
population-level variation in the tree structure. As TLS becomes
more accessible, this framework can standardize biomass uncer-
tainty assessment with a range of TLS instruments and remote
sensing products in forests globally. We determined that TLS
can reduce uncertainty in the future by:

1) providing a direct estimate of standing biomass by sensing
woody volume, thus reducing the reliance on unrepresen-
tative allometry;

2) allowing the development of more representative non-
destructive local allometric equations for application to
available plot data;

3) reducing residual variability in the SAR and LiDAR sen-
sor calibration model stage.

TLS is unlikely to replace manual forest inventory com-
pletely, but adaptive methods may significantly improve plot-
level biomass estimates for calibration and validation. Certain
ecosystems such as dense tropical forests present challenges
for automated TLS inventory because occlusion reduces con-
fidence in relatively simple measurements, but high-quality
single-tree biomass estimation in these systems can supplement
limited allometry. Ultimately, the greatest future improvements
to biomass mapping will be found with targeted TLS acquisi-
tions in areas with nonexistent local allometric equations and
high-biomass density. Finally, due to the direct dependence of
sensor calibration on plot-level estimates, low-bias and uncer-
tainty assessment with TLS has the potential to impact national
and global estimates of aboveground biomass and carbon stor-
age made with future spaceborne missions including GEDI,
ICE-Sat II, NISAR, and BIOMASS.
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